Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
Aging (Albany NY) ; 162024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663907

RESUMO

Previous research has found that living in a disadvantaged neighborhood is associated with poor health outcomes. Living in disadvantaged neighborhoods may alter inflammation and immune response in the body, which could be reflected in epigenetic mechanisms such as DNA methylation (DNAm). We used robust linear regression models to conduct an epigenome-wide association study examining the association between neighborhood deprivation (Area Deprivation Index; ADI), and DNAm in brain tissue from 159 donors enrolled in the Emory Goizueta Alzheimer's Disease Research Center (Georgia, USA). We found one CpG site (cg26514961, gene PLXNC1) significantly associated with ADI after controlling for covariates and multiple testing (p-value=5.0e-8). Effect modification by APOE ε4 was statistically significant for the top ten CpG sites from the EWAS of ADI, indicating that the observed associations between ADI and DNAm were mainly driven by donors who carried at least one APOE ε4 allele. Four of the top ten CpG sites showed a significant concordance between brain tissue and tissues that are easily accessible in living individuals (blood, buccal cells, saliva), including DNAm in cg26514961 (PLXNC1). Our study identified one CpG site (cg26514961, PLXNC1 gene) that was significantly associated with neighborhood deprivation in brain tissue. PLXNC1 is related to immune response, which may be one biological pathway how neighborhood conditions affect health. The concordance between brain and other tissues for our top CpG sites could make them potential candidates for biomarkers in living individuals.

2.
World J Microbiol Biotechnol ; 40(6): 182, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668902

RESUMO

The effect of barium ions on the biomineralization of calcium and magnesium ions is often overlooked when utilizing microbial-induced carbonate precipitation technology for removing barium, calcium, and magnesium ions from oilfield wastewater. In this study, Bacillus licheniformis was used to bio-precipitate calcium, magnesium, and barium ions. The effects of barium ions on the physiological and biochemical characteristics of bacteria, as well as the components of extracellular polymers and mineral characteristics, were also studied in systems containing coexisting barium, calcium, and magnesium ions. The results show that the increasing concentrations of barium ions decreased pH, carbonic anhydrase activity, and concentrations of bicarbonate and carbonate ions, while it increased the contents of humic acids, proteins, polysaccharides, and DNA in extracellular polymers in the systems containing all three types of ions. With increasing concentrations of barium ions, the content of magnesium within magnesium-rich calcite and the size of minerals precipitated decreased, while the full width at half maximum of magnesium-rich calcite, the content of O-C=O and N-C=O, and the diversity of protein secondary structures in the minerals increased in systems containing all three coexisting ions. Barium ions does inhibit the precipitation of calcium and magnesium ions, but the immobilized bacteria can mitigate the inhibitory effect. The precipitation ratios of calcium, magnesium, and barium ions reached 81-94%, 68-82%, and 90-97%. This research provides insights into the formation of barium-enriched carbonate minerals and offers improvements for treating oilfield wastewater.


Assuntos
Bacillus licheniformis , Bário , Biomineralização , Cálcio , Magnésio , Magnésio/metabolismo , Bacillus licheniformis/metabolismo , Bário/metabolismo , Cálcio/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Íons , Anidrases Carbônicas/metabolismo , Carbonato de Cálcio/metabolismo
3.
RSC Adv ; 14(15): 10378-10389, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38567344

RESUMO

The smallest Hückel aromatic ring cyclopropenium substituted by electron-donating C-amino groups produced a aminocyclopropenium electron-rich cation. A bifunctional aminocyclopropenium halide catalyst installed with bis-(hydroxyethyl) functions on the amino group was then designed. A typical (diethanolamino)cyclopropenium halide catalyst C5·I was screened optimally for the cycloaddition of carbon disulfide into an epoxide to produce cyclic dithiocarbonate with an excellent conversion (95%) and high selectivity (92%). The electrostatic enhancement of alkyl C-H HBD capability was implemented via vicinal positive charges on the cyclopropenium core, and the acidity of the terminal O-H hydrogen proton increased by intramolecular H-bonding between the two hydroxy groups on the diethanolamino group (O-H⋯O-H). Then, a hybrid H-bond donor comprising enhanced alkyl C-H and hydroxy O-H was formed. The hybrid HBD offered by aminocyclopropenium was vital in activating the epoxide and stabilizing the intermediate, resulting in reduced O/S scrambling. Moreover, weakly coordinated iodide anion served as a nucleophilic reagent to open the ring of the epoxide. The cooperative catalytic mechanism of the HBD cation and halide anion was supported by NMR titrations and control experiments. Eleven epoxides with various substituents were converted into the corresponding cyclic thiocarbonate with high conversion and selectivity under mild conditions (25 °C, 6 h) without a solvent. The cycloaddition of carbon disulfide with epoxides catalyzed by aminocyclopropenium developed a new working model for hydrogen bonding organocatalysis.

4.
Opt Express ; 32(6): 8877-8886, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571134

RESUMO

The limited pattern area of periodic nanostructures limits the development of practical devices. This study introduces an X-ray interference lithography (XIL) stitching technique to fabricate a large-area (1.5 cm × 1.5 cm) two-dimensional photonic crystal (PhC) on the YAG: Ce scintillator, which functions as an encoder in a high numerical aperture optical encoding imaging system to effectively capture high-frequency information. An X-ray imaging experiment revealed a substantial 7.64 dB improvement in the signal-to-noise ratio (SNR) across a large field of view (2.6 mm × 2.6 mm) and achieved comparable or superior image quality with half the exposure dose. These findings have significant implications for advancing practical applications of X-ray imaging.

5.
Int J Biol Macromol ; 266(Pt 2): 131279, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561115

RESUMO

The influence of ferulic acid (FA) on rice starch was investigated by incorporating it at various concentrations (0, 2.5, 5, 7.5, and 10 %, w/w, on dry starch basis) and subjecting the resulting composites to hot-extrusion 3D printing (HE-3DP) process. This study examined the effects of FA addition and HE-3DP on the structural, rheological, and physicochemical properties as well as the printability and digestibility of rice starch. The results indicated that adding 0-5 % FA had no significant effect; however, as the amount of FA increased, the printed product edges became less defined, the product's overall stability decreased, and it collapsed. The addition of FA reduced the elasticity and viscosity, making it easier to extrude the composite gel from the nozzle. Moreover, the crystallinity and short-range ordered structure of the HE-3D printed rice starch gel decreased with the addition of FA, resulting in a decrease in the yield stress and an increase in fluidity. Furthermore, the addition of FA reduced the digestibility of the HE-3D-printed rice starch. The findings of this study may be useful for the development of healthier modified starch products by adding bioactive substances and employing the 3D printing technology.

6.
Environ Health Perspect ; 132(4): 47001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567968

RESUMO

BACKGROUND: Epidemiological evidence suggests air pollution adversely affects cognition and increases the risk of Alzheimer's disease (AD), but little is known about the biological effects of fine particulate matter (PM2.5, particulate matter with aerodynamic diameter ≤2.5µm) on early predictors of future disease risk. OBJECTIVES: We investigated the association between 1-, 3-, and 5-y exposure to ambient and traffic-related PM2.5 and cerebrospinal fluid (CSF) biomarkers of AD. METHODS: We conducted a cross-sectional analysis using data from 1,113 cognitively healthy adults (45-75 y of age) from the Emory Healthy Brain Study in Georgia in the United States. CSF biomarker concentrations of Aß42, tTau, and pTau, were collected at enrollment (2016-2020) and analyzed with the Roche Elecsys system. Annual ambient and traffic-related residential PM2.5 concentrations were estimated at a 1-km and 250-m resolution, respectively, and computed for each participant's geocoded address, using three exposure time periods based on specimen collection date. Associations between PM2.5 and CSF biomarker concentrations, considering continuous and dichotomous (dichotomized at clinical cutoffs) outcomes, were estimated with multiple linear/logistic regression, respectively, controlling for potential confounders (age, gender, race, ethnicity, body mass index, and neighborhood socioeconomic status). RESULTS: Interquartile range (IQR; IQR=0.845) increases in 1-y [ß:-0.101; 95% confidence interval (CI): -0.18, -0.02] and 3-y (ß:-0.078; 95% CI: -0.15, -0.00) ambient PM2.5 exposures were negatively associated with Aß42 CSF concentrations. Associations between ambient PM2.5 and Aß42 were similar for 5-y estimates (ß:-0.076; 95% CI: -0.160, 0.005). Dichotomized CSF variables revealed similar associations between ambient PM2.5 and Aß42. Associations with traffic-related PM2.5 were similar but not significant. Associations between PM2.5 exposures and tTau, pTau tTau/Aß42, or pTau/Aß42 levels were mainly null. CONCLUSION: In our study, consistent trends were found between 1-y PM2.5 exposure and decreased CSF Aß42, which suggests an accumulation of amyloid plaques in the brain and an increased risk of developing AD. https://doi.org/10.1289/EHP13503.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença de Alzheimer , Adulto , Humanos , Estados Unidos , Material Particulado/análise , Poluentes Atmosféricos/análise , Doença de Alzheimer/epidemiologia , Estudos Transversais , Exposição Ambiental/análise , Poluição do Ar/análise , Biomarcadores/análise
7.
Histol Histopathol ; : 18742, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38634557

RESUMO

A model construction of systemic acute leukemia is challenging. Herein, we established a systemic leukemia mouse model using highly immunodeficient NPG mice without any immunosuppressive treatments. NPG mice received tail intravenous injection of SHI-1 cells at the concentration of 1×107 cells (group A) or 5×107 cells (group B) and randomly sacrificed each seven days post-inoculation. Tumor development was monitored using nested-PCR, peripheral blood-smear analysis, flow cytometry, pathological examinations, and immunohistochemistry. The median survival of mice in groups A and B were 33.0 and 30.0 days, respectively. Blast cells in peripheral blood appeared on day 14 in group B, and on day 21 in group A. In addition, SHI-1 cell specific MLL-AF6 mRNA was detected in both spleen and bone marrow on day 14 post-inoculation. 21 days after inoculation, we observed human CD45+CD33+ cells with an SH-1-immunophenotype in the peripheral blood, spleen, and bone marrow, as well as solid neoplasms in multiple organs. Moreover, the histologically infiltrated leukemic cells expressed CD45. In conclusion, the current study demonstrated the normal growth of SHI-1 cells in the NPG mice without immunosuppression, which caused systemic leukemia similar to that observed in acute leukemia patients. We developed an efficient and reproducible model to study leukemia pathogenesis and progression.

8.
Research (Wash D C) ; 7: 0348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617991

RESUMO

The thalamus and its cortical connections play a pivotal role in pain information processing, yet the exploration of its electrophysiological responses to nociceptive stimuli has been limited. Here, in 2 experiments we recorded neural responses to nociceptive laser stimuli in the thalamic (ventral posterior lateral nucleus and medial dorsal nucleus) and cortical regions (primary somatosensory cortex [S1] and anterior cingulate cortex) within the lateral and medial pain pathways. We found remarkable similarities in laser-evoked brain responses that encoded pain intensity within thalamic and cortical regions. Contrary to the expected temporal sequence of ascending information flow, the recorded thalamic response (N1) was temporally later than its cortical counterparts, suggesting that it may not be a genuine thalamus-generated response. Importantly, we also identified a distinctive component in the thalamus, i.e., the early negativity (EN) occurring around 100 ms after the onset of nociceptive stimuli. This EN component represents an authentic nociceptive thalamic response and closely synchronizes with the directional information flow from the thalamus to the cortex. These findings underscore the importance of isolating genuine thalamic neural responses, thereby contributing to a more comprehensive understanding of the thalamic function in pain processing. Additionally, these findings hold potential clinical implications, particularly in the advancement of closed-loop neuromodulation treatments for neurological diseases targeting this vital brain region.

9.
Mikrochim Acta ; 191(5): 267, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627300

RESUMO

A ternary hierarchical hybrid Ni@CoxSy/poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (Ni@CoxSy/PEDOT-rGO) is rationally designed and in situ facilely synthesized as electrocatalyst to construct a binder-free sensing platform for non-enzymatic glucose monitoring through traditional electrodeposition procedure. The as-prepared Ni@CoxSy/PEDOT-rGO presents unique hierarchical structure and multiple valence states as well as strong and robust adhesion between Ni@CoxSy/PEDOT-rGO and GCE. Profiting from the aforementioned merits, the sensing platform constructed under optimal conditions achieved a wide detection range (0.2 µM ~ 2.0 mM) with high sensitivity (1546.32 µA cm-2 mM-1), a rapid response time (5 s), an ultralow detection limit (0.094 µM), superior anti-interference performance, excellent reproducibility and considerable stability. Furthermore, the sensor demonstrates an acceptable accuracy and appreciable recoveries ranging from 90.0 to 102.0% with less than 3.98% RSD in human blood serum samples, indicating the prospect of the sensor for the real samples analysis. It will provide a strategy to rationally design and fabricate ternary hierarchical hybrid as nanozyme for glucose assay.


Assuntos
Glicemia , Compostos Bicíclicos Heterocíclicos com Pontes , Cobalto , Grafite , Níquel , Polímeros , Humanos , Níquel/química , Glicemia/análise , Reprodutibilidade dos Testes , Automonitorização da Glicemia , Glucose/análise
10.
Obesity (Silver Spring) ; 32(5): 1023-1032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38515392

RESUMO

OBJECTIVE: Dichlorodiphenyldichloroethylene (DDE), an obesogen accumulating in adipose tissue, is released into circulation with weight loss, although its impact is underexplored among adolescents. We tested the association using an integrative translational approach of epidemiological analysis among adolescents with obesity and in vitro measures exploring the impact of DDE on adipogenesis via preadipocytes. METHODS: We included 63 participants from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort. We assessed 4,4'-DDE in visceral adipose tissue at surgery and BMI and waist circumference at surgery and 0.5, 1, 3, and 5 years after. We conducted longitudinal analysis to estimate the interaction on weight loss between DDE and time since surgery. In vitro analysis quantified adipogenic differentiation in commercial human preadipocytes exposed to 4,4'-DDE via fluorescent staining and imaging. RESULTS: A dose-response relationship was observed, with the low-exposure group having a greater reduction in BMI during the first year compared to higher-exposure groups and showing smaller regains compared to higher-exposure groups after the first year. In vitro analysis of preadipocytes treated with 4,4'-DDE during adipogenic differentiation for 12 days showed a concentration-dependent increase in lipid accumulation. CONCLUSIONS: DDE could contribute to weight trajectory among adolescents undergoing bariatric surgery, potentially mediated via promoted adipogenesis in preadipocytes.


Assuntos
Adipogenia , Cirurgia Bariátrica , Índice de Massa Corporal , Diclorodifenil Dicloroetileno , Gordura Intra-Abdominal , Redução de Peso , Humanos , Adolescente , Masculino , Feminino , Gordura Intra-Abdominal/metabolismo , Estudos Longitudinais , Obesidade Pediátrica/metabolismo , Adipócitos/metabolismo , Estudos de Coortes , Circunferência da Cintura
11.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543023

RESUMO

The interfacial effect is important for anodes of transition metal dichalcogenides (TMDs) to achieve superior lithium-ion storage performance. In this paper, a MoS2/FeS2 heterojunction is synthesized by a simple hydrothermal reaction to construct the interface effect, and the heterostructure introduces an inherent electric field that accelerates the de-embedding process of lithium ions, improves the electron transfer capability, and effectively mitigates volume expansion. XPS analysis confirms evident chemical interaction between MoS2 and FeS2 via an interfacial covalent bond (Mo-S-Fe). This MoS2/FeS2 anode shows a distinct interfacial effect for efficient interatomic electron migration. The electrochemical performance demonstrated that the discharge capacity can reach up to 1217.8 mA h g-1 at 0.1 A g-1 after 200 cycles, with a capacity retention rate of 72.9%. After 2000 cycles, the capacity retention is about 61.6% at 1.0 A g-1, and the discharge capacity can still reach 638.9 mA h g-1. Electrochemical kinetic analysis indicated an enhanced pseudocapacitance contribution and that the MoS2/FeS2 had sufficient adsorption of lithium ions. This paper therefore argues that this interfacial engineering is an effective solution for designing sulfide-based anodes with good electrochemical properties.

12.
Int J Hematol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530586

RESUMO

This study investigated the effect of rapamycin alone and in combination with chemotherapy (doxorubicin and cytarabine) on AML. Human acute monocytic leukemia cell line SHI-1 and NPG AML model mice created by intravenous injection of SHI-1 cell were treated with rapamycin, chemotherapy, or rapamycin plus chemotherapy. Analysis by cell counting kit-8, western blot, flow cytometry, and immunohistochemistry was performed, and results suggested that both rapamycin and chemotherapy inhibited proliferation of SHI-1 cells both in vitro and in vivo, suppressed neoplasm growth in vivo, and promoted survival of NPG AML mice. The antitumor effect of rapamycin plus chemotherapy was better than that of rapamycin alone and chemotherapy alone. In addition, western blot results demonstrated that rapamycin inhibited the phosphorylation of mTOR downstream targets 4EBP1 and S6K1 in SHI-1 cells, and increased the pro-apoptosis-related protein Bax and autophagy-associated proteins Beclin-1, LC3B-II, and ATG5 while reducing the anti-apoptosis-related protein Bcl-2. In conclusion, the results of this study indicate that rapamycin acts synergistically with doxorubicin and cytarabine in AML treatment, and its underlying mechanism might be associated with mTORC1 pathway-mediated apoptosis and autophagy.

13.
Sci Total Environ ; 923: 171535, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453069

RESUMO

Air pollution and neighborhood socioeconomic status (N-SES) are associated with adverse cardiovascular health and neuropsychiatric functioning in older adults. This study examines the degree to which the joint effects of air pollution and N-SES on the cognitive decline are mediated by high cholesterol levels, high blood pressure (HBP), and depression. In the Emory Healthy Aging Study, 14,390 participants aged 50+ years from Metro Atlanta, GA, were assessed for subjective cognitive decline using the cognitive function instrument (CFI). Information on the prior diagnosis of high cholesterol, HBP, and depression was collected through the Health History Questionnaire. Participants' census tracts were assigned 3-year average concentrations of 12 air pollutants and 16 N-SES characteristics. We used the unsupervised clustering algorithm Self-Organizing Maps (SOM) to create 6 exposure clusters based on the joint distribution of air pollution and N-SES in each census tract. Linear regression analysis was used to estimate the effects of the SOM cluster indicator on CFI, adjusting for age, race/ethnicity, education, and neighborhood residential stability. The proportion of the association mediated by high cholesterol levels, HBP, and depression was calculated by comparing the total and direct effects of SOM clusters on CFI. Depression mediated up to 87 % of the association between SOM clusters and CFI. For example, participants living in the high N-SES and high air pollution cluster had CFI scores 0.05 (95 %-CI:0.01,0.09) points higher on average compared to those from the high N-SES and low air pollution cluster; after adjusting for depression, this association was attenuated to 0.01 (95 %-CI:-0.04,0.05). HBP mediated up to 8 % of the association between SOM clusters and CFI and high cholesterol up to 5 %. Air pollution and N-SES associated cognitive decline was partially mediated by depression. Only a small portion (<10 %) of the association was mediated by HBP and high cholesterol.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Disfunção Cognitiva , Hipercolesterolemia , Hipertensão , Humanos , Idoso , Hipercolesterolemia/induzido quimicamente , Depressão/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Classe Social , Poluentes Atmosféricos/análise , Disfunção Cognitiva/epidemiologia , Hipertensão/induzido quimicamente , Colesterol , Exposição Ambiental , Material Particulado/análise
14.
Alzheimers Dement ; 20(4): 2538-2551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345197

RESUMO

INTRODUCTION: Growing evidence indicates that fine particulate matter (PM2.5) is a risk factor for Alzheimer's disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as a potential mediator of this association. METHODS: We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3, and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-four CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD. HIGHLIGHTS: First study to evaluate the potential mediation effect of DNA methylation for the association between PM2.5 exposure and neuropathological changes of Alzheimer's disease. Study was based on brain tissues rarely investigated in previous air pollution research. Cg10495669, assigned to RBCK1 gene playing a role in inflammation, was associated consistently with 1-year, 3-year, and 5-year traffic-related PM2.5 exposures prior to death. Meet-in-the-middle approach and high-dimensional mediation analysis were used simultaneously to increase the potential of identifying the differentially methylated CpGs. Differential DNAm related to neuroinflammation was found to mediate the association between traffic-related PM2.5 and Alzheimer's disease.


Assuntos
Doença de Alzheimer , Metilação de DNA , Humanos , Doença de Alzheimer/genética , Doenças Neuroinflamatórias , Material Particulado/efeitos adversos , Encéfalo
15.
Nanoscale ; 16(9): 4880-4889, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38319407

RESUMO

Zinc oxide (ZnO) shows great potential as an anode material for advanced energy storage devices owing to its good structural stability and low cost. However, its inferior cycling capacity seriously restricts its practical application. In this work, a pre-lithiation strategy is adopted to construct pre-lithiated ZnO (Li-ZnO) via the facile solid-state reaction method. This well-designed Li-ZnO is polycrystalline, consisting of fine particles. XPS analysis and Raman results confirm the successful pre-lithiation strategy. The pre-lithiation strategy increases the electronic conductivity of Li-ZnO without further carbon coating and suppresses the volume expansion during the electrochemical reaction. As a result, 5 mol% Li-ZnO displays good reversible capacity with a specific capacity of 639 mA h g-1 after 200 cycles at 0.1 A g-1. After 1440 cycles at 1.0 A g-1, the capacity retention is 380 mA h g-1. The pseudocapacitance contribution can reach up to 72.5% at 1.0 mV s-1. Electrochemical kinetic analysis shows that this pre-lithiation strategy can accelerate the lithium-ion diffusion and charge transfer kinetics of the Li-ZnO anode and suppress the pulverization of the electrochemical reaction. This study demonstrates the necessity of developing new anode materials with good cycling stability via this pre-lithiation strategy.

16.
Neurology ; 102(5): e209162, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38382009

RESUMO

BACKGROUND AND OBJECTIVES: Fine particulate matter (PM2.5) exposure has been found to be associated with Alzheimer disease (AD) and is hypothesized to cause inflammation and oxidative stress in the brain, contributing to neuropathology. The APOE gene, a major genetic risk factor of AD, has been hypothesized to modify the association between PM2.5 and AD. However, little prior research exists to support these hypotheses. This study investigates the association between traffic-related PM2.5 and AD hallmark pathology, including effect modification by APOE genotype, in an autopsy cohort. METHODS: A cross-sectional study was conducted using brain tissue donors enrolled in the Emory Goizueta AD Research Center who died before 2020 (n = 224). Donors were assessed for AD pathology including the Braak stage, Consortium to Establish a Registry for AD (CERAD) score, and combined AD neuropathologic change (ABC) score. Traffic-related PM2.5 concentrations were modeled for the metro-Atlanta area during 2002-2019 with a spatial resolution of 200-250 m. One-year, 3-year, and 5-year average PM2.5 concentrations before death were matched to participants' home address. We assessed the association between traffic-related PM2.5 and AD hallmark pathology and effect modification by APOE genotype, using adjusted ordinal logistic regression models. RESULTS: Among the 224 participants, the mean age of death was 76 years, and 57% had at least 1 APOE ε4 copy. Traffic-related PM2.5 was significantly associated with the CERAD score for the 1-year exposure window (odds ratio [OR] 1.92; 95% CI 1.12-3.30) and the 3-year exposure window (OR 1.87; 95% CI 1.01-3.17). PM2.5 was also associated with higher Braak stage and ABC score albeit nonsignificantly. The strongest associations between PM2.5 and neuropathology markers were among those without APOE ε4 alleles (e.g., for the CERAD score and 1-year exposure window, OR 2.31; 95% CI 1.36-3.94), though interaction between PM2.5 and APOE genotype was not statistically significant. DISCUSSION: Our study found traffic-related PM2.5 exposure was associated with the CERAD score in an autopsy cohort, contributing to epidemiologic evidence that PM2.5 affects ß-amyloid deposition in the brain. This association was particularly strong among donors without APOE ε4 alleles. Future studies should further investigate the biological mechanisms behind this association.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Estudos Transversais , Genótipo , Encéfalo/patologia , Apolipoproteínas E/genética
17.
Technol Cancer Res Treat ; 23: 15330338241227291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38258381

RESUMO

Purpose: Magnetic resonance (MR)-guided radiotherapy enables visualization of static anatomy, capturing tumor motion, and extracting quantitative image features for treatment verification and outcome monitoring. However, magnetic fields in online MR imaging (MRI) require efforts to ensure accurate dose measurements. This study aimed to assess the dosimetric impact of a 1.5 T magnetic field in esophageal cancer radiotherapy using MR-linac, exploring treatment adaptation potential and personalized medicine benefits. Methods: A prospective cohort study enrolled 100 esophageal squamous cell carcinoma patients undergoing 4DCT and 3DCT scans before radiotherapy. The heart was contoured on 3DCT, 4DCT end expiration (EE), and 4DCT end inhalation (EI) images by the same radiation oncologist. Reference RT plans were designed on 3DCT, with adjustments for different phases generating 5 plan types per patient. Variations in dose-volume parameters for organs at risk and the target area among different plans were compared using Monaco 5.40.04. Results: Slight dose distortions at air-tissue interfaces were observed in the magnetic field's presence. Dose at air-tissue interfaces (chest wall and heart wall) was slightly higher in some patients (3.0% tissue increased by 4.3 Gy on average) compared to nonmagnetic conditions. Average clinical target volume coverage V100 dropped from 99% to 95% compared to reference plans (planEI and planEE). Dose-volume histogram variation between the original plan and reference plans was within 2.3%. Superior-inferior (SI) direction displacement was significantly larger than lateral and anterior-posterior directions (P < .05). Conclusion: Significant SI direction shift in lower esophageal cancerous regions during RT indicates the magnetic field's dosimetric impact, including the electron return effect at tissue-air boundaries. Changes in OAR dose could serve as valuable indicators of organ impairment and target dose alterations, especially for cardiac tissue when using the 1.5 T linac method. Reoptimizing the plan with the magnetic field enhances the feasibility of achieving a clinically acceptable treatment plan for esophageal cancer patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Radioterapia (Especialidade) , Humanos , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia , Estudos Prospectivos , Campos Magnéticos
18.
Small ; : e2309439, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267824

RESUMO

It is a challenge to regulate charge separation dynamics and redox reaction kinetics at the atomic level to synergistically boost photocatalytic hydrogen (H2 ) evolution. Herein, a robust Ni-doped CdS (Ni-CdS) photocatalyst is synthesized by incorporating highly dispersed Ni atoms into the CdS lattice in substitution for Cd atoms. Combined characterizations with theoretical analysis indicate that local lattice distortion and S-vacancy of Ni-CdS induced by Ni incorporation lead to an increased dipole moment and enhanced spin-polarized electric field, which promotes the separation and transfer of photoinduced carriers. In this contribution, charge redistribution caused by enhanced internal electric field results in the downshift of the S p-band center, which is conducive to the desorption of intermediate H* for boosting the H2 evolution reaction. Accordingly, the Ni-CdS photocatalyst shows a remarkably improved photocatalytic performance with an H2 evolution rate of 20.28 mmol g-1  h-1 under visible-light irradiation, which is 5.58 times higher than that of pristine CdS. This work supplied an insightful understanding that the enhanced polarization electric field governs the p-band center for efficient photocatalytic H2 evolution activity.

19.
J Appl Clin Med Phys ; : e14264, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252813

RESUMO

Create a virtual ArcCHECK-MR phantom, customized for a 1.5T MR-linac, with consideration of the different density regions within the quality assurance (QA) phantom, aiming to streamline the utilization of this specialized QA device. A virtual phantom was constructed in the treatment planning system (TPS) to replicate the ArcCHECK-MR's composition, consisting of five distinct layers: "Outer" (representing the outer PMMA ring), "Complex" (simulating the printed circuit boards), "Detectors" (encompassing the detector area), "Inner" (signifying the inner PMMA ring) and "Insert" (representing the PMMA insert). These layers were defined based on geometric data and represented as contour points on a set of dummy CT images. Additionally, a setup platform was integrated as contoured structures. To determine the relative electron density (RED) values of the external and internal PMMA components, measurements were taken at 25 points in the insert using an ion chamber. A novel method for establishing the exit/entrance dose ratio (EEDR) for ArcCHECK-MR was introduced. The RED of higher density region was derived by evaluating the local gamma index passing rate results with criteria of 2% dose difference and 2 mm distance-to-agreement. The performance of the virtual phantom was assessed for Unity 7 FFF beams with a 1.5T magnetic field. The radii of the five ring structures within the virtual phantom measured 133.0 mm, 110.0 mm, 103.4 mm, 100.0 mm, and 75.0 mm for the "Outer," "Complex," "Detectors," "Inner" and "Insert" regions, respectively. The RED values were as follows: ArcCHECK-MR PMMA had a RED of 1.130, "Detectors" were assumed to have a RED of 1.000, "Complex" had a RED of 1.200, and the setup QA phantom justified a RED of 1.350. Early validation results demonstrate that the 5-layer virtual phantom, when compared to the commonly used bulk overridden phantom, offers improved capability in MR-linac environments. This enhancement led to an increase in passing rates for the local gamma index by approximately 5 ∼ 6%, when applying the criteria of 2%, 2 mm. We have successfully generated a virtual representation of the distinct regions within the ArcCHECK-MR using a TPS, addressing the challenges associated with its use in conjunction with a 1.5T MR-linac. We consistently observed favorable local gamma index passing rates across two 1.5T MR-linac and ArcCHECK-MR unit combinations. This approach has the potential to minimize uncertainties in the creation of the QA phantom for ArcCHECK-MR across various institutions.

20.
Comput Biol Med ; 170: 107983, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286104

RESUMO

Magnetic resonance (MR) image-guided radiotherapy is widely used in the treatment planning of malignant tumors, and MR-only radiotherapy, a representative of this technique, requires synthetic computed tomography (sCT) images for effective radiotherapy planning. Convolutional neural networks (CNN) have shown remarkable performance in generating sCT images. However, CNN-based models tend to synthesize more low-frequency components and the pixel-wise loss function usually used to optimize the model can result in blurred images. To address these problems, a frequency attention conditional generative adversarial network (FACGAN) is proposed in this paper. Specifically, a frequency cycle generative model (FCGM) is designed to enhance the inter-mapping between MR and CT and extract more rich tissue structure information. Additionally, a residual frequency channel attention (RFCA) module is proposed and incorporated into the generator to enhance its ability in perceiving the high-frequency image features. Finally, high-frequency loss (HFL) and cycle consistency high-frequency loss (CHFL) are added to the objective function to optimize the model training. The effectiveness of the proposed model is validated on pelvic and brain datasets and compared with state-of-the-art deep learning models. The results show that FACGAN produces higher-quality sCT images while retaining clearer and richer high-frequency texture information.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...